Timetable for the TrustML YSS online seminars from Jan. to Jun., 2023.

Time (JST)Time (Your Browser)TitleSpeaker Video Link

16:00-17:00 11/01/2023



Learning Deep Feature in Causal Inference with Unobserved Confounder:
Liyuan Xu (Gatsby Computational Neuroscience Unit)

Video

16:00-17:00 18/01/2023



Knowledge Augmentation: Towards multi-objective robust machine learning for critical systems:
Salah Ghamizi (University of Luxembourg)

Video

17:00-18:00 18/01/2023



Multi-Label Classification Neural Networks with Hard Logical Constraints:
Eleonora Giunchiglia (University of Oxford)

Video

18:00-19:00 18/01/2023



Adversarial machine learning in the real-world: assessing and improving model robustness in domain-constrained data space:
Maxime Cordy (University of Luxembourg)

Video

17:00-18:00 24/01/2023



Challenges in Adversarial Attacks for Motion Estimation:
Jenny Schmalfuss (University of Stutgart)

Video

17:00-18:00 30/01/2023



Rigorous evaluation of machine learning models:
Olivia Wiles (DeepMind)

Video

09:00-10:00 01/02/2023



Robust Learning via Cross-Task Consistency:
Alexander (Sasha) Sax (UC Berkeley)

Video

17:00-18:00 06/02/2023



Scalable Trustworthy AI -- Beyond "what", towards "how":
Seong Joon Oh (University of Tübingen)

Video

14:00-15:00 08/02/2023



Understanding Generalized Out-of-Distribution Detection: A Theoretical View
Zhen Fang (University of Technology Sydney)

Video

17:00-18:00 16/02/2023



Adversarial attack in black-box settings:
Yiwen Guo

Video

09:00-10:00 22/02/2023



Datamodels: Predicting Predictions from Training Data:
Andrew Ilyas (MIT)

Video

11:00-12:00 03/03/2023



Economic Modeling, Decision-Making, and Mechanism Design using the AI Economist:
Stephan Zheng (Salesforce Research)

Video

17:00-18:00 10/03/2023



Learning Efficiently from Data using Sparse Neural Networks:
Zahra Atashgahi (University of Twente)

Video

18:00-19:00 10/03/2023



Generative Computer Vision: Robust Generalization with Analysis-by-Synthesis:
Adam Kortylewski (Max Planck Institute for Informatics)

Video

09:00-10:00 17/03/2023



A data-centric view on reliable generalization: From ImageNet to LAION-5B
Ludwig Schmidt (U Washington)

Video

10:00-11:00 24/03/2023



ML Safety
Dan Hendrycks (UC Berkeley)

Video

09:00-10:00 27/03/2023



Provable Domain Generalization via Invariant-Feature Subspace Recovery:
Han Zhao (University of Illinois at Urbana-Champaign)

Video

10:00-11:00 27/03/2023



Great Haste Makes Great Waste: Exploiting and Attacking Efficient Deep Learning
Sanghyun Hong (Oregon State University)

Video

10:00-11:00 28/03/2023



Netflix and Forget:
Mimee Xu (New York University)

Video

18:00-19:00 29/03/2023



Imitation Attacks and Defenses:
Xuanli He (University College London)

Video

11:00-12:00 30/03/2023



Global Optimization with Parametric Function Approximation:
Chong Liu (UC Santa Barbara)

Video

10:00-11:00 04/04/2023



Biologically Inspired Foveation Filter Improves Robustness to Adversarial Attacks:
Muhammad Ahmed Shah (Carnegie Mellon University)

Video

17:00-18:00 18/04/2023



Adversarial Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data:
Yuki Funabiki (Sony Group Corporation JAPAN)

Video

10:00-11:00 20/04/2023



The Vulnerabilities of Preprocessing in Adversarial Machine Learning:
Yue Gao (University of Wisconsin at Madison)

Video

11:00-12:00 20/04/2023



Towards Sample-Optimal Offline Reinforcement Learning:
Ming Yin (UC Santa Barbara)

Video

15:00-16:00 29/05/2023



Risk-aware Online Decision Making:
Yihan Du (Tsinghua University)

Video

14:00-15:00 22/06/2023



Faster and Stronger: from Transformers to GPTs:
Irene Li (University of Tokyo)

Video